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Summary 

The nonlinear, binary blending law of BOGUE has been generalized to 
include a finite number of entangled species. Good agreement has been 
observed between the ROUSE theory modified according to this law and linear 
viscoelastic experiments on cis-l,4-polybutadiene melts and concentrated 
solutions. The more difficult case of heterogeneity due to simultaneous 
degradation and crosslinking can only be qualitatively accounted for. 

Introduction 

The ROUSE theory excells as a physical theory because it correlates 
in molecular terms a single type of experiment: linear viscoelastic 
response. This is an important result, since nonlinear theories neces- 
sarily converge to the linear limit for small strains. 

Recently, a modification of the ROUSE theory for entangled polymers 
was proposed (ALVAREZ 1981), consisting of the introduction of two regimes 
of relaxation times to account for motions of segments below and above the 
critical entanglement length. The molecular-weight-dependence of each 
regime was scaled to agree with known phenomenological relations. A 
smooth transition between the two regimes was found to improve the fit of 
theory and experiment for cis-l,4-polybutadiene (PB). 

The question concerning the effect of molecular weight hetero- 
dispersity on the linear response of entangled polymers remained 
unanswered. Formal results from the ROUSE theory for a continuous distri- 
bution of molecular weights below the critical entanglement molecular 
weight M C are well known (PETICOLAS 1963). No such study has been made for 
entangled polymers. 

In this paper we simulate the effect of polydispersity in the ROUSE 
theory by means of the nonlinear, binary blending law of BOGUE (1970), 
which we have extended for a finite number of species. The ROUSE theory 
modified according to this law exhibits the following features, in agree- 
ment with experimental results: i) the terminal region of the storage 
modulus is shifted to lower frequency as suggested in the past (GRAESSLEY 
1974), 2) the loss modulus is relatively insensitive to molecular weight 
heterodispersity, 3) oscillatory first normal stress coefficients are 
extremely sensitive to polydispersity, and 4) the weight-average appears 
acceptable as the correlating molecular weight parameter for the zero- 
shear viscosity. 
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The general nonlinear blending law 

Discrete molecular weight averages can be calculated according to the 
general formula: 

- ' ~ i w i M i  a 
M = ( 1 )  

a %iwiMi(a-l) 

and the normalization condition: 

i = %iwi (2) 

where w i is the weight fraction of the ith species and M ~ ~ Mn, MI~_ Mw, 

etc. Knowledge of the averages up to a = i + i, together with the 
normalization condition (2) will fix the distribution of i species and their 
weight fractions, without need of a distribution function. 

The generalized MAXWELL model (BIRD 1977) gives for oscillatory shear 
flow with W as the angular frequency: 

G"(W) i 
n' (W) Jo 2 'H (T) dT (3) 

w 1 + (w~) 

G' (w) WT 
n" (W) JO~ 2H(T)dT (4) 

w 1 + (w~) 

where n' is the real part and ~" the imaginary part of the complex visco- 
sity, T is the time constant of each MAXWELL element, and H(T) is the 
distribution function of T's. Additionally, the following limits can be 
defined: 

f: n o = ~ n' (W) = H(T)dT (5) 

d ~" (w) =/~H(T)TdT 
~1 ~ (6) 

d 
where ~o is referred to as the zero-shear viscosity and ~i is the zero- 

o 
shear first normal displacement stress coefficient. 

Thus, by specifying H(T), which is equivalent to specifying the 
relaxation modulus G(t) of each MAXWELL element, the complete linear 
viscoelastic response according to this model can be derived. Only 
frequency dependent functions are considered in this paper; time dependent 
functions will be given elsewhere. 

A general nth-order law for the blending of q species, each with 
weight fraction wi, can be written 

= = wi i (7) 
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where 

and 

T 
H. = h(~), ~ i/q (8) 

k i=i mi/ 

~o b 
I .  = (9) 

1 

~o b and ~o.l are monomeric friction coefficients for the blend and for com- 

ponent i respectively. T is the maximum (or any convenient reference) 
m. 
l 

relaxation time for component i. 
The requirement that the zero-shear viscosity of the blend HOb depends 

only on the weight-average molecular weight M according to the law: 
w 

3.4 
= AM (i0) 

no b w 

where A is a constant independent of molecular weight, places a restriction 
on equation (9) as follows: 

3.4 -n 
M 

I .  w (11) 
1 M. 

1 

The cubic blending law (n = 3) has the advantage of reproducing the 
experimentally observed concentration and molecular weight dependence of 
the limits (5) and (6) (KURATA 1974), while the fourth order law would 
imply, according to (11), that the longest relaxation time of the blend 
would be larger than the longest relaxation time of the highest molecular 
weight component, which would be unreasonable. A ternary blend was found 
to improve the agreement between theory and experiment, over the binary 
blend. 

Results 

Measurements of storage G' and loss G" modulus in the eccentric rot- 
ating disc instrument INSTRON 3250, for cis-l,4-polybutadiene (PB) melts 
and 24 % w/w solutions of PB in n-tetradecane, reduced to 298 K and to 
the melt density, are presented in Figures i and 2. The dynamic viscosity, 
the loss factor and the first normal displacement stress coefficient 
obtained by the exact equivalences: 

G" G" d n" 
n' =~--, tan ~ =-~T, ~i =~- (12) 

are shown in Figures 3 and 4. The dashed lines in these figures are 
results from the ROUSE theory modified for entanglements (ALVAREZ 1981) 
with a single molecular weight equal to M w of the PB melt (M w = 488 

kgmol-l). The solid lines were calculated according to equation (7) with 
n = q = 3, where the q molecular weights and weight fractions were obtained 
by matching the first q + 2 molecular weight averages, calculated by 
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4.3 B.H B.3 
Figure 7. Zero-shear viscosity [I O,O 
and zero-shear first normal displacement 
stress coefficient A versus weight-average 

molecular weight for PB oils as in Fig. 5. 

Dashed lines from equations (13)-(15), 

solid lines according to linear and cubic 

blending law, below and above M c, resp 

means of equations (I) and 

(2), with values obtained 

by gel permeation chroma- 
tography for the PB melt 

(Mw/M n = 2.3). 

The master spectrum 

h(~) was obtained for the 

storage modulus of the 
highest molecular weight 

component according to the 

modified ROUSE theory by 

means of the third order 
approximation of TSCHOEGL 

(1971) and then refined 

iteratively until the 
error between the value 

given by the ROUSE theory 

and the recalculated value 

according to equation (4), 

was negligible. 
Good agreement bet- 

ween the polydisperse 

theory and experiment is 

observed in Figures i-4, 

except for the loss fac- 

tor, Figure 4, which is a 
very sensitive function, 

and includes experimental 

errors in both G' and G". 
The dynamic viscosity 

of three Newtonian PB oils 

(M = 1.5, 3 and 6 kgmol -I 
n 

resp.) is shown in Figure 5. The dashed lines are results calculated from 

the monodisperse ROUSE theory, with M = 3, 6 and 12, resp. and a monomeric 

friction coefficient equal to one half of that employed for the PB melt 

= i0 -Io (~o 4.0 x Nsm -I for the PB melt). The modification of the ROUSE 

theory (ALVAREZ 1981), which implies that molecular segments below the cri- 

tical entanglement molecular weight M c are unaffected by the presence of the 

network, predicts the observed smooth transition between the terminal and 

rubber region of the viscoelastic spectrum, and, at low molecular weight, 
Figure 5, it is also useful to explain the molecular weight dependence of 

viscoelastic functions. However, it is not possible with the present measu- 

rements to reach high enough frequency, so that viscoelastic functions be- 

come independent of molecular weight, as for the PB melt in Figures I-4, 

where the monomeric friction coeffcient was obtained from the high frequency 
region, and the the molecular weight from low frequency measurements. The 
storage modulus of the PB oil (M n = 6) is given in Figure 6, and cannot be 

fitted either by linear distributions according to M = 6, M = 13.8,... or 
n w 

M = 6, M = 24,..., although the dynamic viscosity correlates well with 
n w 

M-~ ~ as mentioned above. The molecular weight distribution of this oil is 

probably complex due to rapid, simultaneous degradation and crosslinking at 
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room temperature. 
Finally, the zero-shear viscosity and zero-shear first normal displace- 

ment stress coefficient measured in cone-and-plate geometry (ALVAREZ 1982) 
are plotted versus weight average molecular weight in Figure 7, for the PB 
oils mentioned above. The normal stress data are, however, not strictly 
Newtonian. The dashed lines were calculated according to the formulae 
(ALVAREZ 1981) 

2 2 N 2 4e-P/Pe 
cfob-N ~Pe "m 

no 62 ~ p2 
(13) 

and 
2 4 4 N 4.8e-P/Pe 

cf b N ~-~Pe 
d ~  4 

~io 36~4kT p=1 p 
(14) 

with M 

Pe = M~C (15) 

where f is the bead friction coefficient, b is the root-mean-square end-to- 
o 

end distance between beads at equilibrium, N is the number of beads and c is 
the number of molecules per unit volume. The solid lines were calculated by 
equations (5) and (6) for M = 12 and Mw/M n = 2.3, and equation (7) with 

n = 1 below and n = 3 above M C. 

It can be concluded that the heterogeneity correction presented here 
contributes a great deal to the accurate prediction of the linear visco- 
elastic properties of entangled polymers. 

We thank the DEUTSCHE FORSCHUNGSGEMEINSCHAFT for generous financial 
support. CHEMISCHE WERKE HOLS AG we thank for the polybutadiene samples. 
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